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Abstract
State-of-the-art ray tracing techniques operate on hierarchical acceleration structures such as BVH trees which wrap objects in
a scene into bounding volumes of decreasing sizes. Acceleration structures reduce the amount of ray-scene intersections that a
ray has to perform to find the intersecting object. However, we observe a large amount of redundancy when rays are traversing
these acceleration structures. While modern acceleration structures explore the spatial organization of the scene, they neglect
similarities between rays that traverse the structures and thereby cause redundant traversals.
This paper provides a limit study of a new promising technique, Hash-Based Ray Path Prediction (HRPP), which exploits
the similarity between rays to predict leaf nodes to avoid redundant acceleration structure traversals. Our data shows that
acceleration structure traversal consumes a significant proportion of the ray tracing rendering time regardless of the platform
or the target image quality. Our study quantifies unused ray locality and evaluates the theoretical potential for improved ray
traversal performance for both coherent and seemingly incoherent rays. We show that HRPP is able to skip, on average, 40%
of all hit-all traversal computations.
CCS Concepts
• Computing methodologies → Ray tracing; Acceleration Structure; • Hardware → Graphics Processing Units; Predictor
Table;

1. Introduction

Ray tracing techniques [Whi80] employ hierarchical acceleration
structures, such as Bounding Volume Hierarchies (BVH), that cap-
ture spatial locality through subdividing scenes into a hierarchy
of ever tighter bounding boxes. These acceleration structures, i.e.,
traversal trees, reduce the subset of a scene that a ray has to inter-
sect. However, reducing ray-scene calculations comes at the cost
of additional ray-box intersections that have to precede ray-scene
intersection computations.

Consequently, a trade-off has to be made between the depth and
the width of a traversal tree, where the branching factor determines
the depth and width of a tree. Wide trees are shallow and able to
quickly traverse a ray to a leaf node for ray-scene intersection com-
putations. On the other hand, deep trees need to traverse many in-
terior levels to reach a leaf node but it entails less ray-scene calcu-
lations.

This paper proposes and studies the potential of a new tech-
nique, hash-based ray path prediction (HRPP), which reduces the
cost of traversing deep trees by exploiting ray locality, where rays
from close-by origins and similar directions follow a similar path
through the tree. HRPP exploits ray locality present throughout a
scene traversal to skip redundant ray-box intersections.

Extensive work has been done in recent years exploiting ray co-
herence for efficient traversal by mapping coherent rays to par-
allel hardware such as SIMD units and GPU Warps [WSBW01,

WGBK07, PKGH97]. HRPP is different in that it proposes to skip
redundant ray traversal computations and prevent rays with high lo-
cality to previous rays from even entering the acceleration structure.
Skipping interior node traversal avoids all DRAM traffic associated
with interior nodes and reduces to overall computations needed to
ray trace a frame.

Similar to the limit study by Lam and Wilson [LW92] which
presents an upper bound on control flow parallelism, we present a
limit study on how many interior nodes can be skipped by exploit-
ing ray locality using HRPP.

This paper makes the following contributions:

• It highlights the potential of ray path prediction for accelerating
hierarchical tree traversal;
• It proposes a hash function that takes into account ray properties

so it can be used for predicting the path of similar rays;
• It shows a theoretical limit study that quantifies ray locality

and evaluates its potential for performance improvements using
HRPP, which was able to avoid 30% of ray-box intersections.
This limit study serves as a basis of a future hardware-based
implementation that can harness HRPP to improve ray tracing
performance.

2. Related Work
Ray Locality. Pharr et al. [PKGH97] observed that primary rays
and simple light rays exhibit ray locality but chose not to further
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explore this type of locality. Boulos et al. [BWB08] worked on pre-
processing rays in the ray pool to accelerate ray traversal, however,
their technique is limited to offline rendering and infeasible for on-
line rendering. Wald et al [WSBW01, WGBK07] use ray locality
for packet tracing but do not skip redundant computations.

GPU BVH Traversal. Aila and Laine [AL09] provided the most
widely used GPU benchmark for ray traversal. Aila and Kerras
[AK10] propose to reduce the memory traffic during tree traversal
via changes to the GPU architecture to facilitate treelet compaction.
Aila and Laine’s GPU ray tracing benchmark has been further ex-
tended recently by Ylitie et al. [YKL17] where the compression of
the memory traffic from an 8-wide BVH improved performance by
a factor of up to 3.3 due to memory reduction. Lier et al. [LSS18]
applied SIMD style ray tracing to wide BVH trees to improve in-
coherent ray traversal performance by 35%-45% on average.

Harware Accelerated Ray Tracing. Shkurko et al. [SGK∗17]
achieved performance gains by buffering rays inside the acceler-
ation structure, thereby achieving perfect prefetching and avoid-
ing duplicate memory fetches. Their technique assumes custom
MIMD hardware and fixed function logic. More recently, Lu et
al. [LHSW17] made changes to the GPU SIMD architecture to
minimize thread divergence to improve traversal speed. Thread di-
vergence was avoided by preventing certain threads in warps from
intersecting scene data, while others are traversing or fetching new
ray data.

Ray tracing APIs. Recently ray tracing graphics APIs have en-
joyed much progress. Embree [WWB∗14] is a highly optimized
CPU path tracer, OptiX [PBD∗10] is it’s GPU counterpart. Mi-
crosoft announced the DXR API [Mic] which was used recently
by EA [HAM19] in a hybrid real-time rendering demo producing
great visual accuracy at interactive frame rates.

3. Ray Tracing Performance Evaluation

We studied the performance characteristics of hierarchical accel-
eration structures using two BVH-based ray tracing implementa-
tions: the CPU-based PBRT [PH10] renderer and Aila’s [AL09]
GPU-based renderer.

PBRT differs from Aila’s in that it renders scenes at a higher
visual quality. Aila’s GPU implementation is optimized for speed
and real-time image generation; hence, less effort is put into sophis-
ticated sampling and lighting computations while texture lookups
are omitted.

Figure 1 shows the proportion of the total run-time consumed
on rendering ray-box intersections (interior nodes) and ray-scene
intersections (leaf nodes) in both implementations on increasingly
complex scenes. The proportion labeled ‘Other’ in Figure 1 is spent
on path tracing tasks such as sampling, texture lookups or lighting
computations. The proportion of time spent computing ray-box and
ray-triangle intersections is correlated with the geometrical com-
plexity of the scene.

For the CPU-based PBRT, the time spent in traversing the BVH
tree is, on average, 40% of the total execution time, where around
80% of the traversal time is spent on ray-box intersections.

For Aila’s GPU-based ray tracer, the proportion of time spent on
BVH traversal is, as expected, higher compared to PBRT. Figure 1
shows that the GPU path tracer is spending upwards of 95% of the

Figure 1: Runtime proportions of increasingly complex scenes on
CPU and GPU - 1024×1024 - 8 spp

execution time performing tree traversal. Similar to PBRT, the most
time-consuming step is ray-box intersections.

The results above show that tree traversal remains the most time-
consuming step in ray tracing, even when using benchmarks that
use very different rendering implementations and target different
levels of image quality. Thus, accelerating the traversal process
would benefit both real-time ray tracing (e.g., Aila’s GPU imple-
mentation) and offline ray tracing (e.g., PBRT), as in both cases
calculating ray-box intersections remains the most costly part of
the process.

In this paper, we provide a study showing the potential of using
Hash-Based Ray Path Prediction to reduce the amount of ray-box
intersections calculations (i.e., interior node traversal). Whereby,
taking into account the properties of rays and their path through a
scene, we can predict which part of a scene a ray intersects; thus,
avoiding traversing internal tree levels to reach target leaf nodes.

4. Hash-Based Ray Path Prediction

4.1. Overview

Figure 2 shows an example of a binary BVH tree used in PBRT and
Aila’s GPU raytracer.

The traversal of rays through the acceleration structure starts at
the ray pool which dynamically collects all the rays to be traced
throughout the rendering process. Once the rays exit the ray pool,
they are traced through the BVH tree in a top-down fashion. On the
CPU, ray traversal bundles each group of rays in packets for SIMD
parallelized traversal [WGBK07]. On the GPU, rays are bundled
into much wider packets called warps, which match the underlying
architecture of GPUs [AK10].

A ray that intersects with the scene geometry has to traverse up
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Figure 2: Binary BVH Acceleration Structure augmented by
HRPP. The interior nodes are represented by their bounding boxes.
Leaf nodes have both bounding boxes and triangular scene geome-
try. HRPP additions are marked in green. The red arrows represent
the control flow from root to leaves through HRPP

to the full depth of the tree before calculating any scene intersec-
tions. Traversing interior-nodes, performing ray-box intersections
along the way, is a costly operation that does not provide any merit
other than guiding rays to leaf nodes where the essential scene in-
tersections take place.

Shadow Rays follow the ‘hit-any’ paradigm, whereby they
search for any scene intersection. Most other rays, however, need to
determine the closest intersection to the ray’s origin and, therefore,
follow the ‘hit-all’ paradigm.

If two rays exhibit locality they are mapped to similar leaf nodes.
Trivially, primary rays all start at the camera and their directions
remain similar; consequently, primary rays are highly coherent and
exhibit locality with each other.

Subsequent rays, such as reflections rays, shadow rays, and in-
coherent global illumination rays also exhibit locality. Many sec-
ondary rays, which have originated from distinct primary rays, in-
tersect with similar surfaces in the scene or are traced towards simi-
lar light sources. Even seemingly incoherent rays can show similar-
ity with other incoherent rays throughout the rendering of a frame.
This type of locality, which goes beyond primary rays, is unex-
ploited in today’s raytracers.

4.2. Hash-Based Ray Path Prediction (HRPP)

HRPP skips traversal operations by predicting ray paths. HRPP pre-
dicts which nodes a ray is likely to intersect based on information
gathered from previous similar rays.

HRPP’s direct flow guides rays directly from the ray pool to-
wards the leaf nodes as shown in Figure 2 by dashed red lines.

Rather than letting rays enter the acceleration structure via the ray
pool, HRPP computes a ray’s hash value. The hash function em-
ployed by HRPP uses the ray’s physical properties of origin and
direction to associate a unique number with each ray. This number
serves as a lookup index into HRPP’s predictor table. Hash func-
tions are discussed in more detail in Section 5.

Once rays are hashed, the predictor table serves as a storage of
mappings from unique ray hash values to node indices which can
be used as pointers into the tree.

Before any ray enters the tree, a ray’s hash value is computed,
followed by a lookup in the predictor table. If the hash value is
present in the table, a prediction for the ray is made. The prediction
is then evaluated. If the evaluation results in a valid scene inter-
section, the traversal of all interior nodes is skipped. Otherwise, the
ray is added back into the ray pool and traverses the tree as it would
without HRPP.

The predictor predicts either a leaf node or an interior node, as is
illustrated in Figure 2. When an interior node is predicted, the ray
has to traverse the interior layers preceding the target leaf node.

4.3. Precision and Recall

As stated in the previous section, HRPP prediction can either hit or
miss the target leaf node. We intuitively define HRPP hits as posi-
tive predictions, and HRPP misses as negative predictions. We fur-
ther differentiate between four scenarios, true positives, false posi-
tives, true negatives, and false negatives. We will discuss how each
of these scenarios can happen and how to deal with them to guar-
antee correctness.

True positives occur when a ray hits in the predictor and the pre-
diction is deemed correct after evaluation. A prediction is deter-
mined to be correct when a ray-scene intersection is found in the
predicted leaf node. This is the best-case outcome, whereby the
traversal of the tree is successfully skipped. It is to be noted, how-
ever, that there is a slim possibility of a true positive leading to
the wrong visual output, as in the case where the ray is required to
find the closest intersection, e.g the ‘hit-all’ paradigm. Prediction
can cause a ray to not find the closest intersection. This problem is
inexistent for ‘hit-any’ rays such as shadow rays.

On the other hand, false positives occur when a ray hits in the
predictor table but the prediction made by HRPP is incorrect. Upon
a predictor hit, the ray is tested against the geometry in the pre-
dicted node(s). If the ray misses in the node(s), the prediction is
incorrect. In this case, the ray is added back into the ray pool and
traverses the acceleration structure as it would without HRPP. The
performance cost of a false positive is the cost of the lookup in
HRPP and the cost of intersecting the triangles in the wrongly pre-
dicted leaf nodes.

True negatives and false negatives are similar to each other in
the way that they simply miss in the predictor but they do so for
different reasons. The reason for the miss for a true negative is that
there was no chance a similar ray has been encountered previously.
False misses occur when an entry has been evicted from the pre-
dictor. These misses could have been avoided by using an infinitely
sized predictor table. Our current implementation lacks a replace-
ment policy as we focus on evaluating the limits of our technique.
We will therefore not differentiate between true negatives and false
negatives.
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The penalty for negatives is the cost of the predictor table lookup
which includes the cost of computing the hash function. Once a ray
has been established as being falsely predicted, it is re-added to the
ray pool awaiting traversal through the tree.

5. HRPP Hash Function

Hashing is used to map ray properties to a unique value that serves
as an index into the predictor table. In our case, a good hash func-
tion maps rays with similar properties to the same entry in the pre-
dictor table.

Figure 3: Illustration of our hash function’s extraction of bits from
IEEE 754 floating point with an example precision of 2 bits. Bits
marked in green are included in the hash representation

Most path tracers encode ray origin and direction as single pre-
cision floating points encoded in the IEEE 754 [19885] floating
point representation. HRPP’s hash function extracts relevant bits
from the IEEE754 floating point encoding to create a relevant hash
index. Furthermore, we propose to implement the hash encoder us-
ing a fixed function hardware block for maximal performance. Fig-
ure 3 illustrates the proposed hash encoding using an example with
a hash precision of 2 bits. In this example, the predictor index is
composed of the sign bit and the 2 most significant bits from the
exponent as well as the mantissa. A hash precision of 3 bits would
be composed of the sign bit and 3 bits from each exponent and
mantissa.

The same hash encoding is used for all 6 floats of each ray, where
3 floats are used for direction and 3 floats are used for origin. Fi-
nally, we swizzle origin hash values with direction hash values to
obtain a unique predictor table entry that fits into at most 48 bits.
The pseudo-code for the hash function is as follows:

// extract up to 16 bits from IEEE float representation
uint16_t hash_o_x = map_float_to_hash(ray.origin.x)
/* repeat for all 6 floats */

// xor the hashes to save space
uint16_t hash_0 = hash_o_x xor hash_d_z;
uint16_t hash_1 = hash_o_y xor hash_d_y;
uint16_t hash_2 = hash_o_z xor hash_d_x;

// form a unique index
unsigned long long predictor_table_index = \

(hash_0 « 0) or \
(hash_1 « 8) or \
(hash_2 « 16);

While this encoding minimizes hash conflicts, it deliberately
does not avoid them; we want similar rays to result in hash con-
flicts by design. When encountering a hash conflict, the leaf node
of the conflicting ray is inserted into the existing predictor entry.
No predictor entry can hold duplicate nodes; therefore, the leaf is
only inserted if it is not already present in the predictor entry.

5.1. Hash function tradeoff

In this section, we discuss the tradeoff between using loose vs. tight
hash functions.

We define a hash function as loose if it maps too many rays
to the same hash index. As a result, the number of false posi-
tives increases and the overall number of skipped computations de-
creases. A symptom of this is that the entries in the predictor table
become long because the predictor table associates many distinct
leaves with each hash index. On a predictor hit, a ray has to check
against all nodes in the table entry. Long table entries result in a
large amount of predictor induced overhead computation and few
skipped nodes.

On the other hand, a tight hash function will only map rays to the
same index if they are very similar. When using a tight hash func-
tion, HRPP uses significantly more memory due to a larger number
of distinct hash values being stored in the predictor table. Tight
hashing produces few positives and, as a result, few computations
are skipped. The upside to a tight hash function, however, is that
almost all positives are true positives.

(a)

(b)

Figure 4: Illustration of the tradeoff between a tight and a loose
hash function and its impact on the predictor table properties. Bud-
dha - 1024×1024 - spp 8

Figure 4 illustrates this tradeoff using the Buddha scene using
PBRT with 8 samples per pixel at a resolution of 1024×1024. The
number of precision bits used in the hash function and the size of
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Scene Teapot Killeroo Simple Killeroo Metal Buddha Sportscar
number of triangles 2k 60k 500k 1mio 53mio
lighting complexity simple simple complex medium complex

max BVH depth 16 24 27 30 32
hit-any savings(%) 4 48 <1 23 <1

hit-any predictor table size (MB) 16 10.8 31 18 21
hit-all savings(%) 69 52 30 41 32

hit-all predictor table size (MB) 2 84 47 18 18

Table 1: Evaluation of test scenes - resolution 1024×1024 - 8 spp - Go Up Level 0 - hash precision 6

the predictor table is directly correlated as shown in Figure 4 (a). In
this particular example, the number of intersections skipped peaks
at 5 bits.

A hash function that is too tight (e.g. 6 bits and up) increases the
size of the predictor table without additional computations skipped.

A hash function that is too loose (e.g 4 bits and below) produces
a large number of hash conflicts. This is illustrated in Figure 4
(b), where the average number of leaves per entry significantly in-
creases to over 600 with a precision of 4 bits.

6. Limit Study

We implement a software version of HRPP as an extension of the
PBRT renderer to quantify the ray locality present in various exam-
ple scenes. We present an extensive discussion of which parameters
are relevant to HRPP and quantify their effect on prediction accu-
racy.

While previous limit studies, such as the one by Lam and Wilson
[LW92], show the potential for improvement over the state of the
art by quantifying the presence of a new type of locality, they do not
provide a practical implementation. This paper, however, presents
both a limit study similar to [LW92] and HRPP as a technique that
can be adopted in hardware to produce speedup over the current
state of the art raytracers.

For this limit study, our software implementation has the draw-
back of using a large amount of additional memory, often exceeding
over 100MB. A future hardware implementation of HRPP can ad-
dress the memory problem by implementing a replacement policy
for the HRPP predictor table. Future work will study the impact of
a replacement policy on the accuracy and the memory consumption
of HRPP.

6.1. Overview Table

Results are summarized in Table 1. We evaluate HRPP on five
scenes with unified binary BVH trees of increasing geometrical and
illumination complexities. We evaluate two distinct HRPP predic-
tors for hit-any and the hit-all rays to avoid hash conflicts between
hit-all and hit-any rays.

We find that the average number of interior nodes skipped by
HRPP for hit-all rays is above 30% across all test scenes. This
shows that we could skip up to 30% of all interior node compu-
tations and the associated memory traffic by using HRPP for all
hit-all rays. We conclude that hit-all rays are highly suitable for
HRPP prediction.

We find that for scenes with complex lighting models such as

the metal killaroo scene and the sports car scene, hit-any HRPP
achieves a less than 1% skipped interior nodes due to the low lo-
cality of global illumination rays. However, on the geometrically
complex buddha scene, we skip 30% of all hit-any interior node
computations. We conclude that hit-any rays exhibit little ray lo-
cality in scenes with complex lighting models while exhibiting sig-
nificant ray locality if the lighting model is simple.

6.2. Go Up Level

Figure 5: Impact of Go Up Level on number of predictor entries.
Buddha - 1024×1024 - hash precision 6

We define HRPP’s go up level as the level in the acceleration
structure tree the predictor table predicts. A Go Up Level of 0 pre-
dicts the acceleration structure’s leaf nodes. A Go Up Level of 1
predicts the parent node of the leaf nodes. A Go Up Level of 2 pre-
dicts the grand-parent node of the leaf nodes, etc.

As shown in Figure 5, the most significant impact of the predic-
tor’s Go Up Level is the amount of memory used for the predictor
table. A Go Up Level of 1 results in fewer entries and therefore less
memory used at the cost of a small reduction in skipped computa-
tions as compared to a Go Up Level of 0.

6.3. Samples Per Pixel
We study the impact of the number of Samples Per Pixel (SPP) on
the efficiency of HRPP in Figure 6.

Counterintuitively, the number of SPPs is inversely correlated
with the efficiency of HRPP because of hash conflicts. As the num-
ber of hash conflicts increases, the number of memory used for
HRPP increases as shown in Figure 6. We expect a replacement
policy for HRPP to counter this trend but leave the evaluation of
replacement policies as future work.
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Figure 6: Impact of SPP on interor node computation skipped and
the number of predictor entries. Buddha - 1024×1024 - hash preci-
sion 6

7. Conclusion

This paper explores the benefits of exploiting ray locality to accel-
erate BVH traversal by skipping interior nodes. In current acceler-
ation structures ray locality goes unutilized, we show that there is
speed up to be gained from exploiting this locality.

Our limit study uncovers significant potential for speed up by
skipping on average 30% of all hit-all rays during the rendering of
one frame. We explore the design space of ray prediction by quan-
tifying the impact of hash precision, scene complexity, illumination
complexity, samples per pixels as well as HRPP’s Go Up Level. We
propose a hash mapping from IEEE 754 floating point and explore
the tradeoffs for efficient hashing.

Finally, this paper provides directions for future work that ad-
dresses the current shortcomings of HRPP such as memory con-
sumption and hash conflicts.
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